1	Q.	Mr. Budgell indicates on page 11, lines 18 to 27, that any number of				
2		alternatives may be brought forward under a general request for generation				
3		proposals. Explain the process to be followed to procure new generation				
4		Address, specifically, the following:				
5						
6		(a)	The least cost planning process including the assessment of options			
7			such as demand management, energy efficiency, and innovative rate			
8			alternatives.			
9		(b)	The competitive procurement process.			
10		(C)	The role of Newfoundland Power and Newfoundland and Labrador			
11			Hydro; i.e., will these entities be allowed to bid, and if so, as regulated			
12			or unregulated entities? Can Hydro or Newfoundland Power			
13			participate in generation projects that have not been specifically			
14			identified in a competitive procurement process? Address, specifically,			
15			the Fortis Inc. arrangement with Abitibi-Consolidated to develop			
16			additional capacity at Abitibi Consolidated's hydroelectric plant at			
17			Grand Falls-Windsor and to redevelop the forestry company's			
18			hydroelectric plant at Bishop's Falls.			
19		(d)	The role of the Board and the public in the competitive procurement			
20			process.			
21						
22						
23	A.	(a) &	(b) The following is a description of Hydro's Least Cost Resource			
24			Planning Process as it applies to the Island Interconnected System.			

General Methodology Considerations

1

2

13

3 The planning process is an orderly development and comparison of all 4 relevant system costs for all technically acceptable alternatives to 5 determine which is least cost. These principles are applied to both 6 transmission and generation planning. Least cost resource and 7 transmission planning utilize current engineering and economic 8 concepts and procedures, advanced computer software and the 9 expertise and experience of utility system planners and consultants. 10 Inputs to these planning processes include comprehensive data, 11 definitions for the existing systems load and generating capability, 12 planning criteria and future resource options.

14 Using a combination of deterministic and probabilistic techniques, the 15 load forecast for the overall system is compared against system data 16 to identify conditions in which capacity and/or energy deficits are 17 expected to occur. Alternative resource scenarios are developed 18 based upon technically acceptable and achievable options in order to 19 satisfactorily address these conditions. These alternative scenarios 20 are then compared in order to identify which combination of resources 21 produce the least cost plan for addressing the identified need. Three 22 key elements of this process are: 1) the identification and timing of 23 additions; 2) the identification of resource options; and 3) the process 24 by which plans are compared.

	Pade 3 of /
1	Identification and Timing of Additions
2	
3	The timing and need for additional supply is based on an analysis
4	comparing the total Island load forecast with the capability of all
5	existing generation utilizing established planning reserve criteria.
6	Included in this comparison are considerations for the lead time
7	required to bring each new resource into service and the size of the
8	resource relative to the increment of additional load to be served.
9	
10	For resource planning on the Island Interconnected System, Hydro
11	utilizes a forecast which includes demand and energy for the Island
12	system expected to be met by Hydro and all its customers' generation
13	facilities. The system's capability used for this purpose reflects
14	Hydro's and its customers' existing and committed resources (see
15	Schedule IX, H.G. Budgell).
16	
17	Since electrical load consists of two components, capacity and
18	energy, it is necessary to plan so that the production of both
19	components provide a given level of reliability. Hydro's planning
20	criteria, which have been filed with the Board on a number of
21	occasions, are established for the purpose of setting the minimum
22	level of reserve capacity and energy installed on the system and is
23	stated as follows:
24	
25	Energy – The Island Interconnected System should have sufficient
26	generating capability to supply all customer firm load requirements
27	with firm system capability.
28	

1	Capacity – The Island Interconnected System should have sufficient
2	generating capacity to satisfy a loss of load expectation (LOLE) target
3	not more than 2.8 hours per year based on a probabilistic
4	assessment.
5	
6	Comparing the Island generation capability with the load forecast
7	provides the means of identifying the timing and need for additional
8	supply. Negative energy balances or LOLE indices greater than 2.8
9	hours per year indicate deficits in supply and establish the time frame
10	in which additional supply is required (see Schedule X, H.G. Budgell).
11	
12	The above process and criteria identify the timing for resource
13	additions, and establish the constraints within which various resource
14	scenarios must operate. Once these alternative plans are developed,
15	they must be compared in order to identify the least cost resource
16	option.
17	
18	Identification of Options
19	
20	Once the timing and magnitude of resource requirements have been
21	identified, plans are assembled composed of different combinations of
22	resource options in order to address the requirements. Resource
23	options can be either utility or non-utility in origin, with a wide variety of
24	technical and cost characteristics. These variations permit
25	development of plans suited to the unique requirements of the system.
26	
27	There are a variety of means by which the various options available
28	for inclusion in plan development may be identified. In recent years
29	Hydro has relied upon Requests for Proposals (RFPs) for identifying

CA-48 2001 General Rate Application

Page 5 of 7 1 the field of options available for inclusion with its own options for the 2 development of resource plans. In certain instances, however, other 3 means of identifying options may be used, including: use of Hydro's 4 own options only, use of competitive bidding versus Hydro's best 5 option, use of utility options only, or use of selective bidding (bidding 6 from a select group of possible developers). Irrespective of the method chosen however, the options identified are to be compared on 7 a fair and consistent basis in order to ensure that consumers are 8 9 provided least cost power. 10 Plan Comparison 11 12 13 The method used to evaluate the cost effectiveness of a particular 14 expansion plan is to compare on a present worth basis its incremental 15 investment and system operating costs with alternative system 16 expansion plans over a planning horizon (normally 30 to 60 years). 17 This permits an examination of the effect a proposed project has on 18 the plant currently in service and the plant that will likely follow. 19 Sensitivity studies are included in the comparison of plans to test the 20 effects of the variations of such factors as load growth, fuel prices, 21 discount rates, investment costs, etc. 22 23 The main economic criterion used to compare various expansion 24 plans is the discounted value of all costs at a chosen discount rate. In 25 practical application, Hydro represents this criterion as the 26 minimization of annual revenue requirements. 27 28 It is important to note that the transmission planning often proceeds in 29 parallel with resource planning in order to address the requirements to

CA-48 2001 General Rate Application

1		Page 6 of 7 transmit energy from new generation facilities through the Island grid.
2		Initial analysis may only include the interconnection cost to the grid,
3		but later expands into determining whether other modifications are
4		required to other portions of the grid for each resource scenario. Thus,
5		the optimum plan is one that considers both generation and
6		transmission.
7		
8		The above description covered supply side options on the basis of
9		minimization of annual reserve requirements. The resulting plan can
10		be used to calculate system avoided costs, which then can be used to
11		screen demand side management (DSM) options. These are
12		screened for technical, economic and market potential. (eg. As per
13		SRC Report of July 1991. Please refer to response to CA-106.)
14		
15	(C)	Under the Public Utilities Act, any person that sells power and energy
16		to a public utility, but not to the public, does so outside of the
17		jurisdiction of the Public Utilities Board. In the event that a regulated
18		public utility sells power to any person, the sale of that energy is
19		subject to the jurisdiction of the Public Utilities Board. While any
20		process that seeks to determine and select least cost power projects
21		may include a solicitation of bids from non-utilities, there would be no
22		reason to exclude public utilities from that process. The compensation
23		to be received by those utilities would, however, be subject to the
24		jurisdiction of the Public Utilities Board.
25		
26		The participation of a company affiliated with Fortis Inc. in the
27		enhancement of the hydro-electric generation facilities at Bishop's
28		Falls and Grand Falls is specifically exempt from the jurisdiction of the
29		Public Utilities Board under the Public Utilities Act pursuant to a

CA-48 2001 General Rate Application

		Page 7 of 7
1		regulation promulgated under section 4.1 of that Act and from the
2		jurisdiction of the Public Utilities Board under the Electrical Power
3		Control Act, 1994 pursuant to a regulation promulgated under section
4		5.2 of that Act.
5		
6	(d)	The role for the Public Utilities Board in power project planning arises
7		under the Electrical Power Control Act, 1994. There is also,
8		ultimately, a role for the Board under the <i>Public Utilities Act</i> in so far
9		as the rates to be paid by the public are set by the Board. The
10		competitive procurement would be open to the public. The public's
11		role in the regulatory process is a matter to be determined by the
12		Public Utilities Board.